
Bargaining and Reputation
Abreu and Gul (Econometrica, 2000) summary by N. Antić and J. Tolvanen

This summary contains a detailed proof of proposition 1 and a part
of proposition 4, including carefully �lling in some steps missing in
the original paper.

Continuous-time Bargaining

� Continuous-time bargaining, where each of two players has some
probability of playing irrationally

� the irrational type of player i plays in a speci�c way, iden-
ti�ed by �i 2 (0; 1)
� type �i always demands �i, accepts any o¤er of at
least �i and rejects remaining o¤ers

� Extensions to more general forms of irrationality by
Abreu-Pearce (2006)

� Assume each player i has only one irrational type
� Let zi denote the initial probability that i is irrational and
let �{�s rate of discounting be ri

De�nition. A two-player continuous-time bargaining problem is:

B =
��
�1; z

1; r1
�
;
�
�2; z

2; r2
�	
,

where �i 2 (0; 1), zi 2 [0; 1] and ri 2 (0; 1) for each i and �1+�2 >
1. If player i concedes to player j at time t, then their respective
utilities are (1� �j)e�rit and �je�rjt.

� Assumption that �1 + �2 > 1 ensures there are no trivial solu-
tions

� A pure strategy for player i is a time ti at which he will
concede

� Given ti and tj , the payo¤ to player i is:

Pi(ti; tj) =

8<: (1� �j) exp
�
�riti

�
if ti < tj

1
2 (1 + �i � �j) exp

�
�riti

�
if ti = tj

�i exp
�
�ritj

�
if ti > tj

� Amixed strategy for player i is a function F i on [0;1], where
F i(t) denotes the probability of player i conceding by time t

� N.B. F i is not a cumulative distribution function, in
partcular limt!1 F

i (t) � 1� zi < 1

� The payo¤ to player i from adopting mixed strategy F i given
that he is facing mixed strategy F j is the usual extension of the
pure strategy payo¤s:

Pi(F
i; F j) =

Z 1

0

Z 1

0

Pi(ti; tj)dF
i(ti)dF

j(tj)

� If a mixed strategy pro�le (F 1; F 2) constitutes an equilib-
rium, then for any t 2 supp(F i) we have that:

Pi(t; F
j) = sup

s2[0;1]

Pi(s; F
j)

Proposition (1). The unique sequential equilibrium of B =��
�1; z1; r1

�
;
�
�2; z2; r2

�	
is
� bF 1; bF 2�, where:

bF i(t) = 1� ci exp� �rj (1� �i)
�j � (1� �i)

t

�
,

where ci 2 [0; 1] and (1 � c1)(1 � c2) = 0, so that at most 1 player
concedes with positive probability at time 0. In fact ci = zie�

i�0 ,
where:

�0 = min

�
� log z1 [�2 � (1� �1)]

r2 (1� �1)
;
� log z2 [�1 � (1� �2)]

r1 (1� �2)

�
.

� At time �0 <1, the probability of irrationality of both players
reaches 1 simultaneously and F i

�
�0
�
= limt!1 F

i (t).

� If player 2 was rational and he knew that player 1 is irra-
tional, then player 2 would concede immediately

� In the proof below, while changing the order of exposition, we
kept the references to the claims made in the paper

Proof of Proposition 1. Assume that (F 1; F 2) is a sequential equi-
librium of this game and let:

ui(t) =

Z t

0

Pi(t; x)dF
j(x) (1)

+
�
F j(t)� F j(t�)

�
Pi(t; t) +

�
1� F j(t)

�
Pi(t;1),

where F j(t�) = lims"t F
j(s), that is, ui(t) is player i�s expected

utility if he concedes at time t.
Claim (c) If F j(t�) = F j(t), then ui is continuous at t, since:

lim
s%t

��ui(t)� ui(s)�� � lim
s%t

����Z t

s

Pi(t; x)dF
j(x)

����
+ lim
s%t

���1� F j(t)�Pi(t;1)� �1� F j(s)�Pi(s;1)��
� lim

s%t
�i [F (t)� F (s)] + 0 = 0,

and similarly for s& t.
Let � i = inf

�
t � 0 : F i(t) = lims!1 F

i(s)
	
be the time that ra-

tional player i concedes for sure.
Claim (a) Note that �1 = �2, since a rational player will always

concede once he or she knows that the other player is irrational (and
will never concede). Let this time be denoted by �0, i.e., �0 = �1 =
�2.
Claim (b) For all t > 0 such that F i(t) � F i(t�) > 0, we have

that F j(t)� F j(t�) = 0. This claim follows because player j would
get higher expected utility by not conceding at all on the interval
(t � "; t] for small " > 0 and instead conceding an instant later
because player i has a positive probability of conceding at time t.
Claim (d) There is no interval (s; s0) such that 0 � s < s0 � �0,

F 1(s) = F 1(s0) and F 2(s) = F 2(s0).
Proof of Claim (d). Assume by way of contradiction that such an

interval exists and let:

s� = sup
�
s0 � �0 : F i(s) = F i(s0) for i = 1; 2 and s < s0

	
:

Fix s0 2 (s; s�). Then for small " > 0, for any t 2 (s� � "; s�),
9� > 0 such that :

ui(s0)� � � ui(t),

for i = 1; 2 (since the other player is not conceding). Note that
by (b) there exists an i such that ui(�) is continuous at s�, since if
F j(s�)�F j((s�)�) > 0, we have that F i(s�) = F i((s�)�). Thus for
this player i and for some � > 0, ui (t) < ui(s0) for any t 2 (s�; s�+�).
Hence F i must be constant on (s�; s� + �) since F i is optimal.

Not conceding at s0 means that you shouldn�t concede at any t for
which ui(s0) > ui(t) (recall N.B.). But then F j is also constant
on (s�; s� + �), and thus s� could not have been the supremum as
de�ned. �
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Claim (e) The preceding claim implies that if 0 � s < s0 � �0,
then F i(s) < F i(s0) for i = 1; 2. This follows since if F i is always
increasing, then there are no jumps in F j .

Claim (f) Thus F 1(t) and F 2(t) are continuous for t > 0, and by
(c) u1 (t) and u2 (t) are continuous for t > 0.

From (e) it follows that Ai =
�
t : ui (t) = supt u

i (t)
	
is dense

in [0; �0] for i = 1; 2. Thus uit is constant for all t > 0, so that
Ai = (0; �0]. Importantly, ui (t) is di¤erentiable with respect to t for
t 2

�
0; �0

�
.

Now, the fundamental theorem of calculus and the di¤erentiability
of ui (�) implies that F 1 and F 2 are di¤erentiable on

�
0; �0

�
. Let

the time derivatives be f1 and f2, respectively and note that by
di¤erentiating , we get the di¤erential equation:

@

@t
ui(t) =

@

@t

Z t

0

�i exp
�
�rix

�
f j(x)dx

+
@

@t

�
1� F j(t)

�
(1� �j) exp

�
�rit

�
,

or:

0 = �i exp
�
�rit

�
f j(t)� (1� �j)f j(t) exp

�
�rit

�
�(1� �j)ri

�
1� F j(t)

�
exp

�
�rit

�
.

Re-arrange the di¤erential equation to put it into standard form:

f j(t) +
(1� �j)ri

[�i � (1� �j)]
F j(t) =

(1� �j)ri
[�i � (1� �j)]

. (2)

We will solve this linear �rst-order di¤erential equation by integrat-
ing factors. The appropriate integrating factor for this equation is:

g(t) = exp

�
(1� �j)ri

[�i � (1� �j)]
t

�
= exp (�jt) .

Multiplying both sides of equation 2 by g(t) yields:

g(t)f j(t) + g(t)�jF
j(t) = g(t)�j

d

dt

�
exp (�jt)F

j(t)
�
= exp (�jt)�j .

Integrating both sides with respect to t:

exp (�jt)F
j(t) = exp (�jt)� cj

F j(t) = 1� cj exp (��jt) ,

where cj is a constant determined by boundary conditions. Note
that by (b) if F i(0) > 0 then F j(0) = 0, and so at least one cj = 1.

The other boundary condition comes from the fact that a rational
player i would concede at time �0 at the latest, so that by Bayes�
rule:

1 = P
�
player i concedes before �0 j player i is rational

�
=

P
�
player i concedes before �0

�
P (player i is rational)

=
F i(�0)

1� zi .

This implies F i(�0) = 1 � zi. To work out which player is the one
with cj = 1, solve:

1� exp
�
��1T 1

�
= 1� z1, and

1� exp
�
��2T 2

�
= 1� z2.

The solution is:

T 1 =
� log z1
�1

, and T 2 =
� log z2
�2

.

If T 1 = T 2 then both c1 = c2 = 1. Otherwise the player with cj = 1
is the one with T j < T i.
The other player (whose concessions would have taken longer)

makes a discrete consession at time 0, this concession is ci. This
ensures that both rational players concede for sure at the same time
�0 = minfT 1; T 2g. That is, ci is chosen so that:

1� ci exp
�
��i�0

�
= 1� zi.

Thus F i = bF i for i = 1; 2. Since uj(t) is constant on (0; �0], if player
i is using the above strategy F i, then F j is a best response (anything
is).

Discrete-time Bargaining

� The next part of the paper shows that the war of attrition is
a natural limiting structure for a large family of "alternating
o¤ers"-type bargaining games

� limit of interest is when the time between o¤ers becomes
small

� Consider the following family of discrete time bargaining games:

� 2 players share a pie
� If no agreement, both get zero payo¤
� If players agree in period t and player 1 is agreed to get
share x 2 [0; 1] of the pie, players�utilities are:

P1: xe�r1t

P2: (1� x)e�r2t;

where r1 and r2 are measures of impatience

� An extensive form bargaining game is then identi�ed with an
arbitrary function g : R+ ! f0; 1; 2; 3g which governs who gets
to o¤er in which turn:

� If g(t) = i 2 f1; 2g, then player i gets to o¤er in turn t
� If g(t) = 0, then no one gets to o¤er in turn t
� If g(t) = 3, both get to make a simultaneous o¤er.

� The bargaining happens discretely

� The set ftjg(t) = i or g(t) = 3g \ [0; t] is �nite for each t
and i = 1; 2.

� Both players get to o¤er in�nitely many times:

� #ftjg(t) = i or g(t) = 3g =1 for i = 1; 2.

� The game is played as follows:

� In turn t, if g(t) = i 2 f1; 2g, player i o¤ers a share x to
player 1 and the rest to player 2

� If the o¤er is accepted, the game ends and players get
the utilities mentioned earlier

� If the o¤er is rejected, the game continues to turn t0 =
minft̂ > t : g(t̂) 2 f1; 2; 3gg

� In turn t, if g(t) = 3 both players make o¤ers x1 and x2
simultaneously

� If x1 � x2, then the game ends and the players get the
utilities mentioned earlier, where the realized share
for player 1 is x1 + 1

2 (x2 � x1) and for player 2 is
1� x2 � 1

2 (x1 � x2)
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� If x1 > x2, then the game continues to turn t0 =
minft̂ > t : g(t̂) 2 f1; 2; 3gg

� We can now de�ne convergence of a sequences of discrete bar-
gaining games

De�nition. A sequence of discrete bargaining games (gn)n2N con-
verges to continuous-time, if for all � > 0 there exists n� such that
n � n� and t � 0 ) f1; 2g � gn([t; t+ �]).

� Informally, (gn)n2N converges to continuous-time, if players get
to o¤er more and more frequently in the sequence of games.
Both players o¤er in arbitrarily small time intervals in games
with high enough indices

� Strategy for player i in game n is denoted by �in and �n =
(�1n; �

2
n) denotes a strategy pro�le

� Denote the random outcome of a given pro�le �n in a discrete
game gn by ��n = (�xn; �tn)

� �xn is the share that player 1 receives in gn
� �tn is the time game gn ends

� No agreement is identi�ed as
�
1
2 ;1

�
Proposition (4). Let (gn)n2N be a sequence of discrete bargaining
games converging to continuous-time. Let �n denote a sequential
equilibrium of gn and ��n the random outcome corresponding to �n.
Then ��n converges in distribution to �, where � is the random out-
come of the unique equilibrium from Proposition 1.

� Proof of this is very long, these notes will only prove one lemma

Lemma. For any � > 0 there exists n� such that in any sequential
equilibrium of gn for n � n� after any history ht such that i is known
to be rational and j is not, the payo¤ to i is at most 1� �j + � and
the payo¤ to j is at least �j � � (evaluated at time t).

� Informally, the lemma says that when one player is revealed
to be rational, the other gets her will almost completely and
almost without delay

Proof of Lemma. We want to show that if j continues to act ir-
rationally then her payo¤ converges to �j when n ! 1. As-
sume j continues to act irrationally and g(t) 2 f1; 2; 3g. Let
zjt = P(j irrationaljj acted crazy up to time t). If zjt 6= 0, then
Bayes�rule implies:

zjt =
zj

P(j acted crazy up to time t)
� zj .

Since j acted irrationally up to time t, zjt 6= 0 and hence zjt � zj .
The game ends in �nite time if j continues to act irrationally.
For t; s let:

Ptjs = (gn doesn�t end before tjgn hasn�t ended before s) .

Note �rst that by conceding to j in period t, i can secure herself at
least 1 � �j � (1 � �j)Psjt. Taking a strategy that may postpone
the end with positive probability up to t̂+ t can yield at most:

1� Pt+btjt| {z }
Get everything immediately if j rational

+ Pt+btjte�ri t̂(1� �j)| {z }
wait until t+ t̂ and yield to irrational j

.

Any strategy that may lead to such postponing can be optimal only
if:

(1� �j)Pt+btjt � 1� Pt+btjt + Pt+btjte�ri t̂(1� �j),

which holds i¤ Pt+btjt � 1

1+(1��j)(1�e�rit̂)
: = �. In particular if

the postponing is optimal, we have that Pt+btjt � �. Running this

argument again from time t+ bt to t+2bt, we �nd that Pt+2btjt+bt � �.
By Bayes�rule:

�2 = � � � � Pt+btjt � Pt+2btjt+bt
= P

�
gn doesn�t end before t+ 2btjgn hasn�t ended before t�

� zjt ,

since the event that j is irrational is a subset of the above event (j
could for example be rational but plan on conceding at time t+3bt).
Repeating the above argument K times, we �nd that

zjt � �k ! 0, as k !1,

but this contradicts the fact that zjt > zj and hence the game has
to end in �nite time.
Since it takes only a �nite amount of time after t for gn to end,

the following function is well de�ned:

t(n) = inf fs : gn ends before t+ s, if j behaves irrationallyg :

Note that t(n) may depend on the history of play through which one
arrived to period t, we supress this dependence.
We next show that for any given sequence of length t histories,

t(n) ! 0 as n ! 1. Assume the opposite. Then (gn)n2N has
a subsequence, WLOG assume it�s (gn)n2N, such that there exists
(htn; t(n))n2N and an � > 0 such that game gn ends at time t+ t(n)
conditional on arriving there through history htn and t(n) > � for all
n. Simplify notation and rescale rj = 1 and ri = r.
Consider the time period [t + t(n) � 
; t + t(n)] for some 
 >

0. If the game has arrived to period t + t(n) � 
 the de�nition of
t(n) implies that given j�s continued irrational behavior, i must put
positive probability on a strategy which leads the game to last at
least 
 longer.
Let x be i�s expected payo¤, if j agrees to an o¤er worse than �j

by time �
 for some � 2 (0; 1). Let y be i�s expected payo¤, if j
doesn�t agree to any such o¤er by �
. Let � be the probability with
which i believes that j will not agree. Now the fact that i�s strategy
leads i to reject �j implies that:

1� �j � (1� �)x+ �y, (3)

) � � x� 1 + �j
x� y ; whenever x� y > 0: (4)

If rational j has not agreed by time t + t(n) � 
 + �
, then she
knows (given i�s strategy) that by waiting for (1 � �)
 longer will
yield her at least �je�(1��)
 . This argument does not depend on
� < 1, so:

x � 1� e
�j . (5)

Knowing this, player i cannot hope to get anything better than
1� �je�(1��)
 after time t+ t(n)� 
 + �
, hence:

y � e�r�
(1� e�(1��)
�j). (6)

We next show that for small 
 and large � the right-hand side is
bounded from above by 1� �j . To see this, notice �rst that:

e�r�
(1� e�(1��)
�j) < 1� �j , �j <
1� e�r�


1� e�(r�+(1��))
 .

Note that both the numerator and the denominator ! 0 as 
 ! 0.
We can try l�Hôpital�s rule!
The derivative of the numerator is r�e�r�
 and when 
 ! 0 it
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approaches r�. The derivative of the denominator is (r� + (1 �
�))e�(r�+(1��))
 and when 
 ! 0 it approaches (r� + (1 � �)).
Thus there exists �
 > 0 s.t. for 
 2 (0; �
), we have that �j <

1�e�r�

1�e�(r�+(1��))
 if �j <

r�
r�+1�� . Rearanging we get that the �rst

inequality holds if:
� >

�j
�j + r(1� �j)

.

Note that the right-hand side is always less than one. Thus for 
 < �

and � > �j

�j+r(1��j) , we have:

y � e�r�
(1� e�(1��)
�j) < 1� �j . (7)

Combining (7) with (3) when the bounds for 
 and � hold, we get
that:

1� �j � (1� �)x+ �y < (1� �)x+ �(1� �j)

) x > 1� �j > y

i.e., (4) holds.
Summarizing inequalities (4)-(7), for small enough 
 and big

enough � we have:

� � x� 1 + �j
x� y , x � 1� e�
�j ,

y � e�r�
(1� e�(1��)
�j), x � 1� �j > y.

Note next that:

@

@x

�
x� 1 + �j
x� y

�
=
x� y � x+ 1� �j

(x� y)2 =
1� �j � y
(x� y)2 > 0,

i.e., the RHS of the �rst inequality is increasing in x) substituing
the RHS of the second inequality for both x yields an upper bound.
Thus substituting the second and the third estimate into the �rst
yields:

� � �j(1� e�
)
1� �je�
 � e�r�
 + �je�(r�+(1��))


.

Again both the numerator and the denominator converge to zero as

 ! 0, so use l�Hôpital again. Derivative of the numerator is �je�


and as 
 ! 0 it converges to �j . The derivative of the denominator
is �je�
 + r�e�r�
 � �j(r� + (1 � �))e�(r�+(1��))
 and converges
to:

�j + r� � �j(r� + (1� �)) = r� + �j(1� r)� as 
 ! 0.

Therefore � ! �j
�(�j+r(1��j)) .

Now note that, since � > �j
�j+r(1��j) we have:

�j
�(�j + r(1� �j))

< 1.

Fix a � that satis�es the condition above. Then we can �nd 
̂ s.t.

 < 
̂ implies that � < � for some � < 1. That is, the probability
that player j acts irrationally for the �rst � fraction of the last 

units of time has to be less than � for it to be optimal for player i
to reject 1� �j .
Now consider the remaining (1 � �)
 units of time. Repeat the

whole argument above to get that for the � fraction of this time �
has to be less than � for it to be optimal to reject 1��j during this
time. Put together the probability that player j acts irrationally up
until the last 
 � �(1 � �)
 = (1 � �)2
 units of time must be less
than �2 for i to reject 1� �j .
Repeat the argument k times to get that the probability that j

acts irrationally up until the last (1 � �)k
 units of time must less
than �k. Choose k such that �k < zj . Denote the probability that j
acts irrationally up until the last (1� �)k
 units of time by �k.

The event that j acts irrationally at least up to the last (1��)k

units of time conditional on acting irrationally up to time t is clearly
a superset of the event that j acts irrationally for ever conditional
on acting irrationally up to time t. Hence we get zjt � �k < zt. But
this contradicts the fact that zt � zjt .

� The argument relies on the fact that someone still gets to o¤er
during the time period [t; t+ t(n)] of length at least � for large
n

� If gn doesn�t converge to continuous time, this might not
be true

� For each sequential equilibrium �n let F in : R ! [0; 1], where
F in(t) is the probability that player i takes an action not consis-
tent with being irrational in game gn before time t conditional
on the other player having played like a crazy player until time
t

� To prove Proposition 4 the authors prove the following three
claims

(1) Every subsequence of (F 1n ; F
2
n)n2N has a convergent subse-

quence (weak convergence).

(2) The limit points of (F 1n ; F
2
n)n2N do not have common

points of discontinuity.

(3) If (F 1n ; F
2
n)n2N converges to (F

1; F 2), and F 1 and F 2 do
not have common points of discontinuity, then (F 1; F 2) is
an equilibrium of the continuous-time game.

� Since by Proposition 1, there is only one equilibrium in the
continuous-time game, call it (F 1; F 2), every convergent sub-
sequence of (F 1n ; F

2
n)n2N is converging to (F

1; F 2 /), and thus
(F 1n ; F

2
n)n2N is converging to (F

1; F 2)

� Suppose not, then there exists a subsequence
(F 1nk ; F

2
nk
)k2N and an � > 0 such that jj(F 1nk ; F

2
nk
) �

(F 1; F 2)jj > � for all k (in the Lévy-Prokhorov met-
ric). However, by assumption, this subsequence has a
converging subsequence, )(.

� Let Xn
i be a random variable that gets value t if player i reveals

herself to be rational in game n at time t and zero otherwise

� By the arguments above we know that Xn
i converges in dis-

tribution to the same random variable of the continuous-time
game

� Let In be the random variable that gets value i if player i is the
�rst to act non-irrationally and j otherwise

� By Continuous Mapping Theorem1 this converges in dis-
tribution to the same thing of the continuous-time game

� By Lemma 1 the outcome from player i acting non-irrationally
while j continues to act irrationally converges to 1� �j

� Hence the outcomes of the discrete games, �n which are a contin-
uous transforms of the above pointwise convergent sequence and
Ins, converge in distribution to the outcome of the continuous-
time game �.

� Note that the division of the cake in the limit, the time of
the division in the limit and the conceding player are the
same as in the continuous-time game

1The set of discontinuity points of In has measure zero, this is the set f(x; x) 2
R2 : x 2 Rg. The pre-images of 1 and 2 are open.
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